Neuronal Calcium Wave Propagation Varies with Changes in Endoplasmic Reticulum Parameters: A Computer Model
نویسندگان
چکیده
Calcium (Ca²⁺) waves provide a complement to neuronal electrical signaling, forming a key part of a neuron's second messenger system. We developed a reaction-diffusion model of an apical dendrite with diffusible inositol triphosphate (IP₃), diffusible Ca²⁺, IP₃ receptors (IP₃Rs), endoplasmic reticulum (ER) Ca²⁺ leak, and ER pump (SERCA) on ER. Ca²⁺ is released from ER stores via IP₃Rs upon binding of IP₃ and Ca²⁺. This results in Ca²⁺-induced-Ca²⁺-release (CICR) and increases Ca²⁺ spread. At least two modes of Ca²⁺ wave spread have been suggested: a continuous mode based on presumed relative homogeneity of ER within the cell and a pseudo-saltatory model where Ca²⁺ regeneration occurs at discrete points with diffusion between them. We compared the effects of three patterns of hypothesized IP₃R distribution: (1) continuous homogeneous ER, (2) hotspots with increased IP₃R density (IP₃R hotspots), and (3) areas of increased ER density (ER stacks). All three modes produced Ca²⁺ waves with velocities similar to those measured in vitro (approximately 50-90 μm /sec). Continuous ER showed high sensitivity to IP₃R density increases, with time to onset reduced and speed increased. Increases in SERCA density resulted in opposite effects. The measures were sensitive to changes in density and spacing of IP₃R hotspots and stacks. Increasing the apparent diffusion coefficient of Ca²⁺ substantially increased wave speed. An extended electrochemical model, including voltage-gated calcium channels and AMPA synapses, demonstrated that membrane priming via AMPA stimulation enhances subsequent Ca²⁺ wave amplitude and duration. Our modeling suggests that pharmacological targeting of IP₃Rs and SERCA could allow modulation of Ca²⁺ wave propagation in diseases where Ca²⁺ dysregulation has been implicated.
منابع مشابه
Calcium Channel Blockade Ameliorates Endoplasmic Reticulum Stress in the Hippocampus Induced by Amyloidopathy in the Entorhinal Cortex
Entorhinal cortex (EC) is one of the first Entorhinal cortex (EC) is one of the first cerebral regions affected in Alzheimer’sdisease (AD). The pathology propagates to neighboring cerebral regions through a prion-likemechanism. In AD, intracellular calcium dyshomeostasis is associated with endoplasmicreticulum (ER) stress. This study was designed to examine hippocampal ER stre...
متن کاملCalcium Channel Blockade Ameliorates Endoplasmic Reticulum Stress in the Hippocampus Induced by Amyloidopathy in the Entorhinal Cortex
Entorhinal cortex (EC) is one of the first Entorhinal cortex (EC) is one of the first cerebral regions affected in Alzheimer’sdisease (AD). The pathology propagates to neighboring cerebral regions through a prion-likemechanism. In AD, intracellular calcium dyshomeostasis is associated with endoplasmicreticulum (ER) stress. This study was designed to examine hippocampal ER stre...
متن کاملModeling calcium waves in cardiac myocytes: importance of calcium diffusion.
Under certain conditions, cardiac myocytes engage in a mode of calcium signaling in which calcium release from the sarcoplasmic reticulum (SR) to myoplasm occurs in self-propagating succession along the length of the cell. This event is called a calcium wave and is fundamentally a diffusion-reaction phenomenon. We present a simple, continuum mathematical model that simulates calcium waves. The ...
متن کاملQuantitative interactions between the A-type K+ current and inositol trisphosphate receptors regulate intraneuronal Ca2+ waves and synaptic plasticity.
The A-type potassium current has been implicated in the regulation of several physiological processes. Here, we explore a role for the A-type potassium current in regulating the release of calcium through inositol trisphosphate receptors (InsP3R) that reside on the endoplasmic reticulum (ER) of hippocampal pyramidal neurons. To do this, we constructed morphologically realistic, conductance-base...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 27 4 شماره
صفحات -
تاریخ انتشار 2015